Program: Oral and Poster Abstracts
Session: 617. Acute Myeloid Leukemia: Biology, Cytogenetics and Molecular Markers in Diagnosis and Prognosis: Poster I
Here we performed an in silico analysis of the relationship between gene expression and the overall survival of AML patients using data from three independent databases: the TCGA AML database (https://tcga-data.nci.nih.gov/tcga/; n = 187), the GSE6891 database (n = 520), and the GSE10358 database (n = 91). Expression of genes encoding several factors, including IL2RA, GPR56, ACDY7, and kappa-binding protein -1 (KBP-1), inversely correlated with the overall survival of AML patients. We focused on the potential function of KBP-1 in AML development in this study.
KBP-1 is a transcriptional regulator that was known to inhibit NF-kB signaling and enhance TGF-beta signaling. Previous studies indicated that KBP-1 inhibits teratoma growth. We detected significantly higher kbp-1 mRNA levels in cells from human AML cells than other leukemia cells. To study the potential function of KBP-1 in human leukemia, we inhibited the expression of KBP-1 by introducing lentivirus-encoded shRNAs into MV4-11 and THP-1 cells. The KBP-1 deficiency resulted in significantly decreased in vitro growth of these leukemia cells over time. To determine the underlying mechanism by which KBP-1 supports the growth of leukemia cells, we compared the cell cycle status, migration, and apoptosis of AML cells treated with these shRNAs or scrambled control shRNA. KBP-1-deficient cells had significantly increased levels of apoptosis compared to cells treated with the control shRNA (for example, 68% early apoptosis in KBP-1 knockdown MV4-11 cells vs 15% early apoptosis in control MV4-11 cells at 3 days after shRNA infection). These results indicate that KBP-1 supports leukemia cell growth by suppressing apoptosis.
We further studied the function of KBP-1 in AML development using the KBP-1 knockout mice and retrovirus transplantation mouse models. Consistent with the results of KBP-1 knockdown in human leukemia cells, the knockout of KBP-1 in MLL-AF9 AML cells dramatically delayed AML development in mice, as determined by survival, flow cytometry, immunohistochemistry, and colony forming analyses. Serial transplantation of wild-type and KBP-1 knockout AML cells indicates that KBP-1 deficiency impaired the self-renewal of AML stem cells. We are working on elucidating the underlying mechanism by which KBP-1 supports the activity of AML stem cells. Together, this is the first demonstration of KBP-1 function in hematopoietic maligancies. KBP-1 is highly expressed by AML cells and its expression correlates with AML development. KBP-1 supports the survival of human AML cells and the activity of AML stem cells. The tumor-supportive role of KBP-1 in AML is different from its tumor-suppressive function in teratoma.
Disclosures: No relevant conflicts of interest to declare.
See more of: Acute Myeloid Leukemia: Biology, Cytogenetics and Molecular Markers in Diagnosis and Prognosis
See more of: Oral and Poster Abstracts
*signifies non-member of ASH