-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

3088 CAR-T Cells Are Serial Killers of Tumor Cells

Adoptive Immunotherapy
Program: Oral and Poster Abstracts
Session: 703. Adoptive Immunotherapy: Poster II
Sunday, December 6, 2015, 6:00 PM-8:00 PM
Hall A, Level 2 (Orange County Convention Center)

Misty Jenkins, PhD1*, Alex Davenport1*, Ryan Cross1*, Carmen Yong1*, David S. Ritchie, MD, PhD2, Joe Trapani1*, Michael Kershaw1*, Phil Darcy1* and Paul Neeson, PhD3,4,5*

1Peter MacCallum Cancer Centre, Melbourne, Australia
2Royal Melbourne Hospital, Parkville, Australia
3Sir Peter MacCallum Dept of Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
4Haematology and Immunology Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
5Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia

Chimeric antigen receptor (CAR) T cells have shown clinical efficacy in refractory B cell malignancies.  Despite these exciting clinical results, our fundamental understanding of CAR-T cell biology is limited, possibly limiting the broader application of CAR-T cells to additional haemopoetic and solid cancers. To date, the mechanism of CAR-T immunological synapse formation with tumor cells and kinetics of subsequent serial killing by CAR-T cells has not been explored. Here, we investigated the kinetics of CAR-T cell activation and cytotoxicity, including immune synapse formation, and kinetics of tumor cell killing, closely comparing to activation and cytotoxicity via the T cell receptor (TCR). To address this, we developed a mouse model in which the CD8+ T cells (termed CAR.OT-I cells) co-expressed two antigen receptors, the clonogenic OT-I TCR, and a second generation CAR comprising a scFV to human HER2, CD28 and CD3ζ signaling domains. Effector CAR.OT-I cells were activated via their antigen receptors using either SIINFEKL-pulsed or HER-2 expressing tumor cells, the interactions between the effector CAR.OT-I cells and tumor cells were then assessed by time lapse live microscopy. CAR.OT-I cell activation via the endogenous TCR or the CAR did not affect tumor killing kinetics, except the time taken from CAR.OT-I activation to detachment (from the dying tumor cell) was significantly slower when the endogenous TCR was engaged. Subsequently, we showed for the first time, that CAR.OT-I cells have serial killing capacity, which is important to consider when therapeutic numbers of CAR-T cells are likely to be outnumbered by tumor targets. Individual CAR.OT-I cells killed multiple tumor cells, whether activated via the endogenous TCR or the CAR. We further explored whether these findings have implications for killing of tumor cells using low effector:target cell ratio in short versus long-term killing assays, chromium release and xCELLigence killing assays respectively. We observed, no matter which antigen receptor was activated, the effector CAR.OT-I cells were equivalent killers of tumor cells in short term assays (4-8 hours). However, over a period of 50 hours, CAR.OT-I cells activated via the CAR killed tumor cells at a lower rate than when activated via the TCR. This was due to CAR.OT-I CAR expression down-regulation from 20-50 hours. This study highlights that fundamental differences occur in the way CAR-T cells kill tumor cells, depending on how the effector CAR-T cell is activated. Furthermore, the study provides important insights for CAR-T cell activation in vivo with implications for single- or dual-receptor-focused CAR-T cell therapy and improved clinical benefit.

Disclosures: No relevant conflicts of interest to declare.

*signifies non-member of ASH