Gene Therapy and Transfer
Program: Oral and Poster Abstracts
Session: 801. Gene Therapy and Transfer: Poster II
Program: Oral and Poster Abstracts
Session: 801. Gene Therapy and Transfer: Poster II
Sunday, December 6, 2015, 6:00 PM-8:00 PM
Hall A, Level 2
(Orange County Convention Center)
Anti-tumor efficacy of genetically modified T cells depends on in vivo expansion and durable persistence of infused cells. Multiple variables including the structure of the CAR and characteristics of the recipient impact the anti-tumor effect of CAR+ T cells. However, a code for an optimal CAR design that would deliver clinically relevant result is yet to emerge. Here we propose a new measure of “fitness” for CAR+ T cells based on mitochondrial biomass that is quantifiable and could be translated to clinical settings. Spare respiratory capacity (SRC) is defined as the extra mitochondrial capacity available in a cell to produce energy under conditions of increased work or stress. Memory T cells capable of responding to infection has been shown to possess extra SRC (Windt et al., Immunity 2012). We therefore investigated whether subsets of CD19-specific CAR+ T cells after electro-transfer of Sleeping Beauty (SB) plasmids and propagation on activating and propagating cells (AaPC) could be identified based on SRC. Transmission electron microscopy revealed that genetically modified T cells revert to a condensed state of mitochondria after 2 weeks of activation through a second-generation CD19-specific CAR. However, mock-electroporated T cells activated by cross-linking CD3 (using AaPC loaded with OKT3) retain a classic mitochondrial structure. Moreover, antigen-driven numeric expansion in presence of membrane bound IL-15 led to an increase in mitochondrial biomass in CAR+ T cells. We extended these observations to various CAR+ T cells with unique specificity for tumor antigens and found similar changes in mitochondrial structure and distribution. Next, we examined if an increase in mitochondrial biomass influences functionality of genetically modified T cells. By SB mediated transposition CARs were co-expressed along with a fluorescence reporter protein (EYFP-GRX2) constituting yellow fluorescent protein fused to the mitochondrial localization sequence of GRX2 to track mitochondrial distribution in live cells. The genetically modified T cells were selectively propagated by stimulating the CARs using a proprietary monoclonal antibody that binds to a common extracellular stalk motif in CAR construct. CAR+ T cells that signaled through chimeric CD137z exhibited a high mitochondrial mass (EYFPhigh) and had superior rates of expansion ex vivo. In contrast, CAR+ T cells that signaled through chimeric CD28z had a low mitochondrial mass (EYFPdim), elevated levels of apoptosis, and inferior rates of numeric expansion. Confocal microscopy showed EYFP counts were higher for CAR+ T cells that signaled through CD137 signaling domain. We hypothesize that increased survival of CD137z-CAR T cells in a challenging cell culture environment could be due to reserve bio-energetic potential concomitant with the ability to meet metabolic demand of activated T cells. Further, SRC could be quantified using a fluorescent probe for mitochondrial mass pre-infusion which may be a defining criterion attesting to the fitness of CAR+ T cells for human applications.
Disclosures: Jena: Intrexon: Equity Ownership , Patents & Royalties: Potential royalties (Patent submitted) ; Ziopharm Oncology: Equity Ownership , Patents & Royalties: Potential roylaties (Patent submitted) . Rushworth: Intrexon: Other: Potential Equity ownership ; Ziopharam Oncology: Other: Potential Equity Ownership . McNamara: Ziopharm Oncology: Equity Ownership , Patents & Royalties: Potential royalties , Research Funding ; Intrexon: Equity Ownership , Patents & Royalties: Potential royalties , Research Funding . Cooper: Ziopharm Oncology: Employment , Equity Ownership , Patents & Royalties , Research Funding ; Intrexon: Equity Ownership , Patents & Royalties .
See more of: 801. Gene Therapy and Transfer: Poster II
See more of: Gene Therapy and Transfer
See more of: Oral and Poster Abstracts
See more of: Gene Therapy and Transfer
See more of: Oral and Poster Abstracts
*signifies non-member of ASH