Program: Oral and Poster Abstracts
Type: Oral
Session: 616. Acute Myeloid Leukemia: Novel Therapy, excluding Transplantation: Novel Targeting Approaches
Methods. To test this hypothesis, we compared three termination strategies in human AML xenograft models: (1) T cell ablation with the anti-CD52 antibody alemtuzumab after treatment with T cells lentivirally-transduced with anti-CD123-41BB-CD3ζ (CART123), (2) T cell ablation with the anti-CD20 antibody rituximab after treatment with CART123 engineered to co-express CD20 (CART123/CD20), and (3) treatment with “biodegradable” anti-CD123 mRNA-electroporated CAR T cells (RNA-CART123). Mice engrafted with luciferase-expressing human AML cell lines (MOLM14, MOLM13, U937) or primary AML specimens (n=3) were treated with CD123-redirected CAR T cells as above. For T cell depletion studies, alemtuzumab 1 or 5 mg/kg was injected intraperitoneally (IP) at 1-4 weeks after 1x105-106 CART123 to determine optimal dosing and timing of T cell ablation. In subsequent studies, rituximab 10 mg/kg was injected IP 4 weeks after 1x105-106 CART123/CD20, or 1x107RNA-CART123 were injected intravenously at 5, 9, and 16 days after AML engraftment. Mice were followed by weekly bioluminescent imaging and/or quantitative flow cytometry analyses of blood, spleen, and/or bone marrow.
Results. CART123 treatment of CD123+ AML xenografts induced marked T cell expansion and leukemia eradication in vivo, resulting in long-term animal survival (p<0.0001 vs untransduced T cell-treated controls). Minimal xenogeneic graft-versus-host effects were observed. One dose of alemtuzumab rapidly eliminated T cells in all tested models with best efficacy of 5 mg/kg dosing at 4 weeks post-CART123. CART123/CD20 inhibited AML proliferation with similar kinetics to those of CART123, and 1 dose of rituximab at 4 weeks post-CART123/CD20 infusion rapidly eliminated T cells while preserving leukemia remission. Alemtuzumab or rituximab alone did not inhibit AML proliferation in non-CART123-treated xenograft models vs AML-only controls (p=1.00). Mice with CART123- or CART123/CD20-induced AML remission at time of T cell ablation remained leukemia-free for ≥12 weeks, and animal survival did not differ from that of CD123-redirected CAR T cell-treated mice that did not undergo T cell depletion (p=1.00). In contrast, early depletion of T cells with alemtuzumab at 1, 2, or 3 weeks post-CART123 resulted in failure to eliminate AML with subsequent leukemia progression and animal death. Furthermore, AML rechallenge of animals with alemtuzumab- or rituximab-ablated T cells resulted in rapid leukemia proliferation without T cell re-expansion, confirming completeness of T cell depletion. Non-ablated mice demonstrated CAR T cell re-expansion with rejection of CD123+ leukemia rechallenge (p<0.0001). RNA-CART123 rapidly eliminated AML and facilitated long-term animal survival, although RNA-CART123 had expectedly shorter persistence in vivo than did CART123 or CART123/CD20.
Conclusions. Alemtuzumab and rituximab completely eliminated CD123-redirected CAR T cells in human AML xenograft models. Sustained leukemia remission required CART123 or CART123/CD20 persistence for 4 weeks prior to T cell termination via alemtuzumab or rituximab post-CART123 or CART123/CD20, respectively. Ongoing studies are investigating efficacy of T cell elimination in additional xenograft models and against other anti-AML CAR T cell immunotherapies. Results from these studies may help to identify promising T cell termination strategies that will augment efficacy of CAR T cell therapy in patients with AML, particularly prior to stem cell transplantation. RNA-CART123 trials in patients with relapsed/refractory AML will open soon.
Disclosures: Off Label Use: depletion of CAR T cells with alemtuzumab or rituximab. Kenderian: Novartis: Patents & Royalties , Research Funding . Ruella: Novartis: Patents & Royalties , Research Funding . Aplenc: Sigma Tau: Consultancy . June: Novartis: Patents & Royalties , Research Funding . Grupp: Novartis: Consultancy , Research Funding . Gill: Novartis: Patents & Royalties , Research Funding .
See more of: Acute Myeloid Leukemia: Novel Therapy, excluding Transplantation
See more of: Oral and Poster Abstracts
*signifies non-member of ASH