[ Visit Client Website ]

Before you can access ASH's online program, you must agree to the following:
  • Abstracts submitted to the ASH Annual Meeting are considered embargoed from the time of submission.
  • The media, companies and institutions issuing press releases, and others are required to abide by the embargo policies governing the Society’s annual meeting. Read ASH’s embargo policy for more information.
-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant

2253 Effects of Fluvastatin on the Expression of Tissue Factor Pathway Inhibitor in Human Umbilical Vein Endothelial Cells

Program: Oral and Poster Abstracts
Session: 321. Blood Coagulation and Fibrinolytic Factors: Poster II
Sunday, December 11, 2011, 6:00 PM-8:00 PM
Hall GH (San Diego Convention Center)

Keiko Maruyama1*, Eriko Morishita, MD, PhD1*, Hiroki Torishima1*, Akiko Sekiya1*, Hidesaku Asakura, MD, PhD2*, Shigeki Ohtake, MD, PhD1 and Shinji Nakao, MD, PhD3

1Clinical Laboratory Science, Kanazawa University, Kanazawa, Japan
2Cellular Transplantation Biology, Kanazawa Univeristy, Kanazawa, Japan
3Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan

OBJECTIVE: 3-Hydroxyl-3-methyl coenzyme A reductase inhibitors (statins) inhibit the production of mevalonate and other isoprenoid intermediates of the cholesterol biosynthetic pathway, such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP). Statins can protect the vasculature from inflammation and atherosclerosis caused by cholesterol-dependent and cholesterol-independent mechanisms. The latest investigations show that statins modulate the expression of genes related to inflammation, blood coagulation and fibrinolysis in cultured endothelial cells. Tissue factor pathway inhibitor (TFPI) which is expressed by endothelial cells plays a crucial role in hemostasis by regulating TF-induced initiation of coagulation. The aim of this study was to elucidate the effects of fluvastatin, lipophilic statin, on expressions of TFPI in human umbilical vein endothelial cells (HUVECs). METHODS: HUVECs were incubated for 24 h in culture medium including fluvastatin (0.1, 1.0, 10.0 µM). The expression of TFPI mRNA and protein was evaluated by western blot and reverse transcription-polymerase chain reaction (RT-PCR), respectively. To identify which product of statin reaction is necessary for the effect of fluvastatin, HUVECs were incubated for 24h with fluvastatin with mavalonate, FPP, or GGPP. On the other hand, it is known that fluvastatin increase nitric oxide (NO) bioavailability. To determine whether fluvastatin induced NO affects TFPI mRNA and protein expression, HUVECs were incubated for 24h with fluvastatin with NG-Nitro-L-arginine methyl ester, hydrochloride (L-NAME: specific inhibitor of NO synthase). Additionally, to determine whether fluvastatin affects p38MAPK, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), and protein kinase C (PKC) pathways, HUVECs were incubated for 24h with fluvastatin with the inhibitors of p38MAPK (SB203580), JNK (SP600125), MEK (U0126), PI3K (LY294002), and PKC (GF109203). The expression of TFPI mRNA and protein was evaluated by western blot. RESULTS: Fluvastatin increased TFPI mRNA and protein expression (1µM: p<0.01, 10µM: p<0.05; Figure1). This fluvastatin-dependent up-regulation of TFPI was prevented by mevalonate and geranylgeranylphosphate (GG-PP). In contrast, the addition of L-NAME did not alter induction of TFPI expression by fluvastatin. Similarly, Y-27632 (Rho kinase inhibitor) and NSC23766 (Rac1 inhibitor) were ineffective. Additionally, the inhibitors of p38MAPK, PI3K, and PKC prevented fluvastatin-dependent up-regulation. On the other hand, the inhibitors of JNK and MEK were ineffective. CONCLUSIONS: This study suggests that fluvastatin significantly increases TFPI mRNA and protein expression, and this effect of fluvastatin is accompanied by the activation of p38 MAPK, PI3K, and PKC pathways. Therefore, this effect may play an important role in preventing cardiovascular events.

Figure 1 Effects of fluvastatin on TFPI protein (A) and mRNA (B) expression in HUVECs.  The columns represent the mean ± SD (n=3) percentages of the control culture. *p<0.05 versus control. **p<0.01 versus control.


Disclosures: No relevant conflicts of interest to declare.

*signifies non-member of ASH