[ Visit Client Website ]

Before you can access ASH's online program, you must agree to the following:
  • Abstracts submitted to the ASH Annual Meeting are considered embargoed from the time of submission.
  • The media, companies and institutions issuing press releases, and others are required to abide by the embargo policies governing the Society’s annual meeting. Read ASH’s embargo policy for more information.
-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant

1815 Role of TORC1 and TORC2 in Multiple Myeloma

Program: Oral and Poster Abstracts
Session: 651. Myeloma - Biology and Pathophysiology, excluding Therapy: Poster I
Saturday, December 10, 2011, 5:30 PM-7:30 PM
Hall GH (San Diego Convention Center)

Patricia Maiso, PhD1, Yi Liu, PhD2*, Abdel Kareem Azab, PhD, BSPharm1, Brittany Morgan1*, Feda Azab, BPharm1*, Antonio Sacco, BS1*, Michaela Reagan, PhD1*, Hai T Ngo, BS1*, Yang Liu, PhD1, Yong Zhang, PhD1, Charles Lin, PhD3*, Aldo M Roccaro, MD, PhD1, Christian Rommel, PhD2* and Irene M. Ghobrial, MD1

1Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
2Intellikine, La Jolla, CA
3Massachusetts General Hospital, Boston, MA

Mammalian target of rapamycin (mTOR) is a downstream serine/threonine kinase of the PI3K/Akt pathway that integrates signals from the tumor microenvironment. Mechanistically, mTOR operates in two distinct multi-protein complexes, TORC1 (Raptor) and TORC2 (Rictor). TORC1 leads to the phosphorylation of p70S6 kinase and 4E- BP1, while TORC2 regulates phosphorylation of Akt and other kinases. In multiple myeloma (MM), PI3K/Akt plays an essential role enhancing cell growth and survival and is activated by the loss of the tumor suppressor gene PTEN and by the bone marrow microenvironment. Rapamycin and its analogues have not shown significant activity in MM, likely due to the lack of inhibition of TORC2. In this study, we dissected the baseline activity of the PI3K/Akt/mTOR pathway TORC1/2 in MM cell lines with different genetic abnormalities.

Methods: Eight different MM cell lines and BM samples from MM patients were used in the study. The mechanism of action was investigated by MTT, Annexin V, cell cycle analysis, immunochemistry, Western-blotting and siRNA assays. For the in vivo analyses, Luc+/GFP+ MM.1S cells (2 x 106/mouse) were injected into the tail vein of 30 SCID mice and tumor progression was detected by bioluminescence imaging. In vivo homing was checked by in vivo flow. Nanofluidic proteomic immunoassays were performed in selected tumors. Results: Raptor (TORC1) and Rictor (TORC2) knockdowns led to significant inhibition of proliferation of MM cells even in the presence of bone marrow stromal cells, this effect was also accompanied by inactivation of p-Akt, p-rS6 and p-4EBP1. We used INK128, a dual and selective TORC1/2 kinase inhibitor with similar effects to Raptor plus Rictor knockdown. We examined the protein expression levels of both mTOR complex and their downstream effectors in MM plasma cells from patients and cell lines. mTOR, Akt, pS6R and 4E-BP1 are constitutively activated in all samples. We showed that dual TORC1/2 inhibition is much more active than TORC1 inhibition alone (rapamycin) even in the presence of cytokines or stromal cells. INK128 induced cell cycle arrest, autophagy and apoptosis in cell lines and primary plasma cells even in the presence of bone marrow stromal cells (BMSCs). INK128 also showed a significant effect inhibiting cell adhesion in our in vivo homing model. Oral daily treatment with INK128 highly decreased the percentage of CD138+ tumor plasma cells in mice implanted with MM cells and reduced the levels of p-Akt and p-4EBP. These results suggest that potent and complete blockade of mTOR as part of TORC1 and TORC2 is potential therapeutic strategy to induce cell cycle arrest, apoptosis and disruption of MM cells interaction with the BM microenvironment. Conclusion: Dual inhibition of TORC1 and TORC2 represent a new and promising approach in the treatment of MM and its microenvironment. The ability of INK128 to inhibit both TORC1 and TORC2 strongly supports the potential use of this compound in MM patients.

Disclosures: Liu: Intellikine: Employment. Roccaro: Roche: Research Funding. Rommel: Intellikine: Employment. Ghobrial: Celgene: Consultancy; Millennium: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Research Funding.

*signifies non-member of ASH