-Author name in bold denotes the presenting author
-Asterisk * with author name denotes a Non-ASH member
Clinically Relevant Abstract denotes an abstract that is clinically relevant.

PhD Trainee denotes that this is a recommended PHD Trainee Session.

Ticketed Session denotes that this is a ticketed session.

101 Human Cytokine-Induced Memory-like NK Cells Exhibit in Vivo Anti-Leukemia Activity in Xenografted NSG Mice and in Patients with Acute Myeloid Leukemia (AML)

Adoptive Immunotherapy
Program: Oral and Poster Abstracts
Type: Oral
Session: 703. Adoptive Immunotherapy: Clinical Studies
Saturday, December 5, 2015: 1:00 PM
W314, Level 3 (Orange County Convention Center)

Rizwan Romee, MD1, Rosario Maximillian, MD, PhD2*, Melissa M Berrien-Elliott, PhD3*, Julia A Wagner2*, Brea A Jewell2*, Timothy Schappe2*, Jeffrey W Leong2, Stephanie E Schneider2*, Sarah Willey2* and Todd A Fehniger, MD, PhD2

1BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, MO
2Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
3Washington University School of Medicine, Saint Louis, MO

Natural killer (NK) cells mediate anti-AML responses and previously published clinical trials of adoptive allogeneic NK cell therapy provide proof-of-principle that NK cells may eliminate leukemia cells in patients. However, complete remissions occur in 30-50% of patients with active AML and are typically of limited duration. Thus, improvements are needed for this promising cellular immunotherapy strategy. Following paradigm-shifting studies in mice, it was established that human NK cells exhibit an innate ‘memory-like’ responses following a brief, combined pre-activation with IL-12, -15, and -18 (Romee R et. al., Blood, 2012). These long-lived memory-like NK cells have an enhanced ability to produce IFN-g in response to restimulation with cytokines or activating receptor ligation, even following extensive proliferation. We hypothesized that memory-like NK cells exhibit enhanced responses to myeloid leukemia.

Compared to control NK cells from the same donor, IL-12/15/18-induced memory-like NK cells produced significantly increased IFN-g upon co-culture with primary AML blasts in vitro (P<0.001), following 7 days of rest in low dose IL-15 vitro. In addition, memory-like NK cells had increased granzyme B expression (P<0.01), and enhanced killing of K562 leukemia targets in vitro (P<0.05). Utilizing an in vivo xenograft model of human NK cells in NSG mice (Leong J et. al., BBMT, 2014), IL-12/15/18-induced memory-like NK cells that differentiated in NSG mice for 7 days exhibited increased IFN-g responses after ex vivo re-stimulation with K562 leukemia, confirming their memory-like functionality (P<0.05). To test in vivo responses to human leukemia in this model, luciferase-expressing K562 cells were engrafted into NSG mice (1x106/mouse, IV), and on day 3, groups of mice were injected with IL-12/15/18-pre-activated or control NK cells from the same donor (4x106/mouse). Mice treated with a single dose of memory-like NK cells exhibited significantly improved in vivo leukemia control measured by whole mouse bioluminescent imaging (P=0.03), as well as overall survival (P<0.05), compared to mice treated with control or no NK cells.

Based on these pre-clinical findings, we initiated a first-in-human clinical trial of HLA-haploidentical IL-12/15/18-induced memory-like NK cells in patients with AML (NCT01898793). Relapsed/refractory (rel/ref) AML patients receive lymphodepleting non-myeloablative flu/cy conditioning, infusion of a single dose of CD56+CD3- memory-like donor NK cells, followed by two weeks of low dose rhIL-2. Three patients were treated at dose level 1 (0.5x106 cells/kg) and two patients treated at dose level 2 (1.0x106/kg) with no DLTs observed, and accrual continues. Correlative analyses utilizing donor-specific HLA mAbs allow tracking of donor memory-like NK cell frequency and function following adoptive transfer. Donor memory-like NK cells were detectable in the PB and BM of all tested patients with informative HLA (4/5), peak in frequency at 7-8 days post-infusion, and contract after 14-21 days as expected following recipient T cell recovery (Figure). Memory-like NK cells exhibit significantly increased Ki67%+ as a marker of proliferation at day 7 [97.8+1.0% (donor) vs. 21.6+5.5% (recipient), mean+SEM, P<0.001]. Moreover, functional analyses of NK cells at days 7-8 post-infusion reveal increased numbers of donor IFN-g+ NK cells following restimulation with K562 leukemia cells in the same blood [1009+590 (donor) vs. 8+3 (recipient) IFN-g+ NK cells] or BM [686+423 (donor) vs. 4+2 (recipient) IFN-g+ NK cells] samples. Two of four evaluable patients treated with memory-like NK cells had leukemia free BM and PB at days 14 post-therapy, which correlated with BM NK cell frequency and IFN-g production (Figure). CIML007 had rel/ref AML with 48% BM blasts pre-therapy, and had no evidence of leukemia on day 14, 28, and 100 BM biopsies, and has an ongoing complete remission more than 100 days after this therapy. CIML009 had 80% BM blasts pre-therapy, and had no evidence of leukemia on day 14 BM biopsy post-infusion. Thus, human IL-12/15/18-induced memory-like NK cells expand and have enhanced anti-AML function following adoptive transfer in patients, thereby constituting a promising translational innovation for immunotherapy of AML.

Disclosures: Fehniger: Celgene: Research Funding .

*signifies non-member of ASH